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on the Casimir-Polder force



The Casimir force



The Casimir force
Casimir forces originate from changes in quantum 
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik 
Casimir in 1948

Dominant interaction in the micron and sub-micron
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The Casimir force
Casimir forces originate from changes in quantum 
vacuum fluctuations imposed by surface boundaries

They were predicted by the Dutch physicist Hendrik 
Casimir in 1948

Dominant interaction in the micron and sub-micron
lengthscales

Classical Analog: L’Album du Marin (1836)



Relevant applications

 Gravitation / Particle theory:
Some theories of particle physics predict deviations from the 
Newtonian gravitational potentials in the micron and submicron range

The Casimir force is the main background force to measure these 
non-Newtonian corrections to gravity

Yukawa-like potential:



Relevant applications

 Quantum Science and Technology:

Atom-surface interactions

Example: Casimir-Polder interaction between a BEC and a surface

Precision measurements

Cornell et al  (2007)



Relevant applications

 Nanotechnology:

Actuation in NEMS and MEMS 
driven by Casimir forces

Zhao et al (2003) 

Problems with stiction of 
movable parts in MEMS

Capasso et al (2001)

“pull-in” effect



Modern Casimir experiments

 Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux



Modern Casimir experiments

 Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux

 Atomic force microscope

sphere-plane, d=200-1000 nm
 Mohideen et al



Modern Casimir experiments

 Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux

 MEMS and NEMS

sphere-plane, d=200-1000 nm
Capasso et al, Decca et al

 Atomic force microscope

sphere-plane, d=200-1000 nm
 Mohideen et al



Modern Casimir experiments

 Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux

 MEMS and NEMS

sphere-plane, d=200-1000 nm
Capasso et al, Decca et al

 Atomic force microscope

sphere-plane, d=200-1000 nm
 Mohideen et al



Modern Casimir experiments

 Torsion pendulum

sphere-plane, d=1-10 um
Lamoreaux

 MEMS and NEMS

sphere-plane, d=200-1000 nm
Capasso et al, Decca et al

 Atomic force microscope

sphere-plane, d=200-1000 nm
 Mohideen et al

 Micro-cantilever

plane-plane, cylinder-plane, d=1-3 um
Onofrio et al



Tailoring the Casimir force

 The magnitude and sign of the Casimir force depend on 
the geometry and composition of surfaces

Engineer geometries and designer materials for various applications:

• Demonstration of strongly modified/repulsive Casimir forces

• Demonstration of vacuum drag via lateral Casimir forces

 Effects of geometry:  proximity force approx and beyond

 Effects of materials:  Lifshitz formula and beyond



Geometry effects: PFA 
  The Proximity Force Approximation (PFA) corresponds to approximating the 

Casimir energy by its expression for the planar case, averaging over local planes 

δ(θ) = d + R (1 − cos θ)d

R

θ

R ! dIt is a good approximation when

  There are a few perturbative methods to go beyond PFA, and also exact results 
for a few geometries with perfectly conducting surfaces (cylinder-plane, eccentric 
cylinders, etc).

E
PFA
SP (d) ≈ 2πR

2

∫ θm

0

dθ sin θ
EPP(δ(θ))

A



Geometry effects: lateral force
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Materials effects: Lifshitz eqn. 

dMatsubara frequencies

Reflection coefficients

Kramers-Kronig (causality) relations: 

Dominant frequencies in 
the near-infrared/optical 
region of the EM spectrum 
(gaps d= 200-1000 nm)

The Lifshitz formula: Lifshitz (1956)
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The Casimir-Polder force

vdW - CP interaction Casimir and Polder (1948)

The interaction energy between a ground-state atom 
and a surface is given by

UCP(RA) =
h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ) TrG(RA,RA, iξ)

Atomic polarizability:

Scattering Green tensor:

α(ω) = lim
ε→0

2

3h̄

∑

k

ωk0|d0k|2

ω2
k0

− ω2 − iωε

RA

(

∇×∇×−
ω2

c2
ε(r, ω)

)

G(r, r′, ω) = δ(r − r
′)



The Casimir-Polder force

vdW - CP interaction Casimir and Polder (1948)

The interaction energy between a ground-state atom 
and a surface is given by

UCP(RA) =
h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ) TrG(RA,RA, iξ)

Atomic polarizability:

Scattering Green tensor:

α(ω) = lim
ε→0

2

3h̄

∑

k

ωk0|d0k|2

ω2
k0

− ω2 − iωε

RA

(

∇×∇×−
ω2

c2
ε(r, ω)

)

G(r, r′, ω) = δ(r − r
′)

zA ! λA zA ! λANon-retarded (vdW) limit  Retarded (CP) limit

Eg: Ground-state atom near planar surface @ T=0

UvdW(zA) = −

h̄

8πε0

1

z3
A

∫
∞

0

dξ

2π
α(iξ)

ε(iξ) − 1

ε(iξ) + 1
UCP(zA) = −

3h̄cα(0)

8π

1

z4
A

ε0 − 1

ε0 + 1
φ(ε0)
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 Deflection of atoms Hinds et al (1993)
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Modern CP experiments

 Deflection of atoms Hinds et al (1993)

L= 0.7-1.2 um
Exp-Th agreement @ 10%

 Classical reflection on atomic mirror Aspect et al (1996)

Udip =
h̄

4

Ω2

∆
e
−2kz

UvdW = −

ε − 1

ε + 1

1

48πε0

D2

z3

Exp-Th agreement @ 30%



Modern experiments (cont’d)
 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)

φ =
1

k2

dk

dr
> 1k =

√

k2
0
− 2mU/h̄2



Modern experiments (cont’d)
 Quantum reflection

Shimizu (2001)
DeKievet et al (2003)

Ketterle et al (2006)

Wave-nature of atoms implies 
that slow atoms can reflect from 
purely attractive potentials

U = −Cn/rn (n > 2)

 BEC oscillator Cornell et al (2007)

φ =
1

k2

dk

dr
> 1k =

√

k2
0
− 2mU/h̄2



Lateral Casimir-Polder force

UCP = U
(0)
CP(zA) + U

(1)
CP(zA, xA)

 Normal CP force: U
(0)
CP(zA) =

h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ)

∫
d2k

(2π)2
1

2κ

∑
p

ε̂+p · ε̂−p rp(k, ξ) e−2κzA

 Lateral CP force: U
(1)
CP(zA, xA) =

∫
d2k

(2π)2
eik·rA g(k, zA) H(k)

Response function g: g(k, zA) =
h̄

c2ε0

∫
∞

0

dξ

2π
ξ2α(iξ)

∫
d2k′

(2π)2
ak′,k′−k(zA, ξ)

ak′,k′′ =
∑

p′,p′′

ε̂+
p′ · ε̂

−

p′′

e−(κ′+κ”)zA

2κ′′
Rp′,p′′(k′,k′′)

FL
FN

zA

The non-specular reflection matrices depend on the geometry and material properties.

h(x,y)



Corrugated surfaces
h(x, y) = h0 cos(kc x)Uni-axial corrugation: 

FL = kch0 sin(kc xA) g(kc, zA) x

Lateral Casimir-Polder force:

λc = 2π/kc

λc

We will show below that                    , so that the lateral force brings the 
atom to the neighborhood of one of the crests

g(kc, zA) < 0

Corrugation period: 

U
(1)
CP = h0 cos(kc xA) g(kc, zA)



PFA in Casimir-Polder forces

UCP(RA) ≈ U
(0)
CP(zA − h(rA)) ≈ U

(0)
CP(zA) − h(rA) U

(0)′

CP (zA)

  The PFA corresponds to approximating the CP energy by its expression for the 
planar case with a “local” distance zA − h(rA)

  The PFA corresponds to the limiting case where the 
corrugation is very smooth with respect to the other 
length scales.

kc zA ! 1  [PFA]

  Deviations from PFA can be measured by the ratio ρ ≡

g(kc, zA)

g(0, zA)

zA

λc

≈

h

zA − h
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Example:                                     

zA = 2µm ! λA

corrugation wavelength                                   λc = 3.5µm

ρ ≈ 30%

PFA largely overestimates the 
magnitude of the lateral effect !                                   

  Deviations from PFA



Atoms as local probes

  Before we described large deviations from 
PFA for a sinusoidal corrugated surface.



Atoms as local probes

  Before we described large deviations from 
PFA for a sinusoidal corrugated surface.

  Even larger deviations from PFA can be 
obtained for a periodically grooved surface.

  If the atom is located above one plateau, the PFA predicts that the lateral 
Casimir-Polder force should vanish, since the energy is thus unchanged in a 
small lateral displacement. 

  A non-vanishing force appearing when the atom is moved above the plateau 
thus clearly signals a deviation from PFA!



BEC as a vacuum field sensor

 BEC oscillator

Cornell et al (2005, 2007)

  Normal Casimir-Polder force             shifts the 
normal dipolar oscillation frequency of a BEC trapped 
above a surface 

U
(0)
CP(z)



BEC as a vacuum field sensor

 BEC oscillator

Cornell et al (2005, 2007)

  Normal Casimir-Polder force             shifts the 
normal dipolar oscillation frequency of a BEC trapped 
above a surface 

U
(0)
CP(z)

CM

  Lateral Casimir-Polder force               shifts the lateral dipolar oscillation 
frequency of a BEC trapped above a grooved surface

ω2
x,CM = ω2

x
+

1

m

∫
dxdz n0(x, z)

∂2

∂x2
U

(1)
CP(x, z)

U
(1)
CP(x, z)

Lateral frequency shift: 



BEC as a vacuum field sensor 
 Density variations of a BEC above an atom chip

Schmiedmayer et al (2005)

  For a quasi one-dimensional BEC, the 
potential is related to the 1D density profile as:

Measurement of the magnetic field 
variations along a current-carrying wire

Vho(x) + UCP(x) = −h̄ωx

√

1 + 4ascatn1d(x)



BEC as a vacuum field sensor 
 Density variations of a BEC above an atom chip

Schmiedmayer et al (2005)

  For a quasi one-dimensional BEC, the 
potential is related to the 1D density profile as:

Measurement of the magnetic field 
variations along a current-carrying wire

Vho(x) + UCP(x) = −h̄ωx

√

1 + 4ascatn1d(x)

 Density modulation along the BEC above the 
plateau would be a signature of lateral Casimir-
Polder forces

CM
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Frequency shift for BEC (cont’d)

Rb

ωx/2π = 229 Hz

s = λc/2 a = 250nm

zCM = 2µm

   

Given the reported sensitivity                        for relative frequency shifts from E. 
Cornell’s experiment, we expect that beyond-PFA lateral CP forces on a BEC 
above a plateau of a periodically grooved silicon surface should be detectable for 
distances                , groove period              , groove amplitude               , and a 
BEC radius of, say, 

γ = 10
−5

− 10
−4

zCM < 3µm λc = 4µm a = 250nm

R ≈ 1µm

CM

γ0 ≡

ωx,CM − ωx

ωx



Summary I

  Novel cold atoms techniques open a promising way of 
investigating nontrivial geometrical effects on quantum vacuum

  Important feature of atoms: they can be used as local 
probes of quantum vacuum fluctuations

  We predict large deviations from PFA for the lateral 
Casimir-Polder force on an atom above a corrugated surface

  Non-trivial, beyond-PFA effects should be measurable using 
a BEC as a vacuum field sensor with available technology

For more details see: Dalvit, Maia Neto, Lambrecht, and Reynaud,  
arXiv:0709.2095, 0710.5249    
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Metamaterials and Casimir

Felipe da Rosa (LANL)

Peter Milonni (LANL)

Artificial materials for engineering the Casimir force

Antoniette Taylor (CINT, LANL)

Ongoing work in collaboration with:

Theory:

Experiment:

Smith et al (2007) 
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Casimir attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 
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Casimir attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 

Metamaterials

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir 1948

F

A
= +

π2

240

h̄c

d4

 Ideal repulsive limit
Boyer 1974

ε1 = ∞ µ2 = ∞
F

A
= −

7

8

π2

240

h̄c

d4



 Artificial structured composites with designer electromagnetic properties

 Macroscopic EM response described as dispersive magneto-dielectric media

 Negative refraction

 Perfect lens

 Cloaking

Veselago (1968), Smith et al (2000) 

Pendry (2000) 

Smith et al (2007) 

THz MMs: eg split ring resonators Optical MMs: eg fishnets

ε, µ < 036µm

Metamaterials

400 nm

µeff



   

Quantum levitation with MMs?

“In theory the 
discovery could be 
used to levitate a 

person”



Quantum levitation with MMs?
Leonhardt et al (2007) 

ε(ω) = −1

µ(ω) = −1
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Transformation media

Perfect lens: EM field in -b<x<0 is mapped into 
x’. There are two images, one inside the device 
and one in b<x<2b.
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Quantum levitation with MMs?
Leonhardt et al (2007) 

ε(ω) = −1

µ(ω) = −1

x

x
′

b0

Transformation media

Perfect lens: EM field in -b<x<0 is mapped into 
x’. There are two images, one inside the device 
and one in b<x<2b.

a

a
′

a
′
= |a − 2b|

f = −

∂U

∂a′

∂a′

∂a
= +

h̄cπ2

240a′4

When a< 2b (plates within the imaging range of 
the perfect lens)

Casimir cavity:

Repulsion

For real materials, however .....

• According to causality, no passive medium (               ) can sustain                  
over a wide range of frequencies. In fact,  

• Another proposal is to use an active MM (                ) in order to get 
repulsion. But then the whole approach breaks down, as real photons would 
be emitted into the quantum vacuum. 

ε”(ω) > 0 ε, µ ! −1

ε(iξ), µ(iξ) > 0

ε”(ω) < 0

2b−b

b
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Metamaterials for Casimir 

Metamaterial

Drude-Lorentz model:

εα(ω) = 1 −

Ω2

E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2

M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω = 0.1 ΩM,2/Ω = 0.3

ωE,2/Ω = ωM,2/Ω = 0.1

ΓE,2/Ω = ΓM,2/Ω = 0.01

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm

Ω/2π = 5 × 10
14

Hz



Metamaterials for Casimir 
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Ideal attraction

Ideal repulsion

A slab made of Au (                         ) of width                could levitate in 
front of one of these MMs at a distance of                     !!!

ρ = 19.3 gr/cm3 δ = 1µm

d ≈ 110 nm

Casimir and metamaterials, Henkel et al (2005)
Casimir and surface plasmons, Intravaia et al (2005)

van der Waals in magneto-dielectrics, Spagnolo et al (2007)



Summary II

 Build MMs with strong magnetic response at infrared-
optical frequencies, corresponding to gaps between 200 nm 
and 10 microns. 

 Ongoing theoretical-experimental work at LANL to realize  
strongly modified / repulsive Casimir forces with metamaterials. 

 Metamaterials can strongly influence the quantum vacuum, 
providing a route towards quantum levitation. 



General conclusions

Casimir forces: still surprising after 60 years

CM

  Non-trivial geometry effects

  Non-trivial materials effects


